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analysis revealed classification and potential 
treatment strategy in stage 3–4 NSCLC patients
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Abstract 

Background:  Precision medicine has increased the accuracy of cancer diagnosis and treatment, especially in the era 
of cancer immunotherapy. Despite recent advances in cancer immunotherapy, the overall survival rate of advanced 
NSCLC patients remains low. A better classification in advanced NSCLC is important for developing more effective 
treatments.

Method:  The calculation of abundances of tumor-infiltrating immune cells (TIICs) was conducted using Cell-type 
Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT), xCell (xCELL), Tumor IMmune Estimation 
Resource (TIMER), Estimate the Proportion of Immune and Cancer cells (EPIC), and Microenvironment Cell Popula-
tions-counter (MCP-counter). K-means clustering was used to classify patients, and four machine learning methods 
(SVM, Randomforest, Adaboost, Xgboost) were used to build the classifiers. Multi-omics datasets (including transcrip-
tomics, DNA methylation, copy number alterations, miRNA profile) and ICI immunotherapy treatment cohorts were 
obtained from various databases. The drug sensitivity data were derived from PRISM and CTRP databases.

Results:  In this study, patients with stage 3–4 NSCLC were divided into three clusters according to the abundance 
of TIICs, and we established classifiers to distinguish these clusters based on different machine learning algorithms 
(including SVM, RF, Xgboost, and Adaboost). Patients in cluster-2 were found to have a survival advantage and might 
have a favorable response to immunotherapy. We then constructed an immune-related Poor Prognosis Signature 
which could successfully predict the advanced NSCLC patient survival, and through epigenetic analysis, we found 3 
key molecules (HSPA8, CREB1, RAP1A) which might serve as potential therapeutic targets in cluster-1. In the end, after 
screening of drug sensitivity data derived from CTRP and PRISM databases, we identified several compounds which 
might serve as medication for different clusters.

Conclusions:  Our study has not only depicted the landscape of different clusters of stage 3–4 NSCLC but presented 
a treatment strategy for patients with advanced NSCLC.

Keywords:  Immunophenotypes, Machine learning, Signature, Multiomics, Cancer immunotherapy, Drug sensitivity, 
Treatment strategy
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Background
Non-small cell lung cancer (NSCLC) is the most com-
mon type of lung cancer, which is the leading cause of 
cancer-related death worldwide [1]. The majority of 
NSCLC cases are often first diagnosed at an advanced 
stage when curative treatment is less effective [2]. The 
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overall survival of non-small cell lung cancer patients is 
dissatisfied, and the high rate of invasion and metastasis 
are major problems [3, 4]. During the past two decades, 
ICIs (immune checkpoint inhibitors), including mono-
clonal antibodies targeting programmed death 1 (PD-1) 
and cytotoxic T-lymphocyte antigen-4 (CTLA-4) and 
combination immunotherapy, have begun to alter clini-
cal treatment strategy in multiple cancers, especially in 
NSCLC [5]. Response to immune checkpoint inhibitors 
treatment is associated with multiple factors, such as 
tumor mutation burden (TMB), microsatellite instabil-
ity (MSI), and PDL1 expression [6]. The efficacy of can-
cer immunotherapy also depends on the tumor stage [7]. 
Despite recent advances in cancer immunotherapy, the 
5-year overall survival rate of advanced NSCLC patients 
remains low [8, 9]. Understanding the tumor microen-
vironment and heterogeneity in advanced NSCLC is 
important for developing more effective treatments [10].

The tumor microenvironment is a highly complex eco-
system. We assumed that the heterogeneity of advanced 
NSCLC could be distinguished based on the major cel-
lular components of TME. The development of next-
generation sequencing and public database have made 
it possible to explore novel treatment in multiple can-
cers [11, 12]. To obtain insight into the tumor microen-
vironment, many computational methodologies have 
been developed (including CIBERSORT, TIMER algo-
rithms). For example, the CIBERSORT algorithm, which 
was termed as cell deconvolution approach, has been 
developed to infer lymphocytes and other immune cells 
proportions from bulk transcriptome data. These com-
putational approaches help researchers identify specific 
cell types, and have been widely used in cancer studies 
[13]. Multi-omics analysis has deepened our understand-
ing of the biological basis of cancer and precise survival 
prediction of patients, which is in line with the concept 
of precision medicine [14]. In this study, we attempted to 
classify advanced NSCLC patients, depict their charac-
teristics, and identify novel therapeutic molecular targets 
or potential drugs for different clusters of patients.

Method
Data pre‑processing
The bulk RNA-seq TCGA-LUAD and TCGA-LUSC data 
for NSCLC were downloaded as HTSeq-FPKM files from 
UCSC Xena (https://​xenab​rowser.​net/​datap​ages/). The 
corresponding clinical information including follow-
up data was also collected from UCSC Xena database. 
TCGA-LUAD and TCGA-LUSC microRNAs data were 
derived from TCGA data portal (https://​portal.​gdc.​can-
cer.​gov/). The expression profiles of TCGA-LUAD and 
TCGA-LUSC were pre-processed by the following steps: 
1) Removing samples without follow-up information; 

2) Preserving stage 3 or stage 4 samples; 3) The expres-
sion profile (FPKM values) was transformed into TPMs; 
4) Preserving the genes of log2 (TPM + 1) > 0. From this, 
195 advanced NSCLC samples from TCGA cohort were 
sorted out for further analysis.

Additional cohorts of NSCLC patients were derived 
from Gene Expression Omnibus (http://​www.​ncbi.​nlm.​
nih.​gov/​geo/, platform Illumina GPL6884 (n = 116): 
GSE41271 and GSE42127; platform Affymetrix GPL570 
(n = 45): GSE29013 and GSE37745). The potential batch 
effects (Specifically, between GSE41271 and GSE42127, 
and between GSE29013 and GSE37745) were elimi-
nated using ComBat function (“SVA” package in R) [15]. 
The detailed information of the studying cohorts was 
summarized in Additional file  2: Table  S1-S2 (Com-
bined affy cohort, GSE29013 + GSE37745, N = 45, 
Additional file  2: Table  S1; Combined illumina cohort, 
GSE41271 + GSE42127, N = 116, Additional file  2: 
Table S2).

Transcriptomic and the corresponding clinical infor-
mation of patients with urothelial cancer treated with 
atezolizumab (anti-PD-L1) was downloaded from 
Imvigor210 (http://​resea​rch-​pub.​gene.​com/​IMvig​or210​
CoreB​iolog​ies/), clinical endpoints including complete 
or partial response (CR or PR), stable disease (SD), and 
the progressive disease (PD). Another two transcrip-
tomic datasets from patients with NSCLC treated with 
PD-1 blockade were downloaded from GSE126044 and 
GSE135222 (Two anti-PD1 treatment cohorts, N = 27, 
N = 16, Additional file  2: Table  S3; Imvigor cohort, 
N = 348, Additional file 2: Table S4).

Estimation of the immunological characteristics 
of advanced NSCLC
The abundance of LM22 (22 immune cell types) 
was calculated using CIBERSORT algorithm [16] 
(model = relative, permutation = 1000, disable quantile 
normalization = True, https://​ciber​sort.​stanf​ord.​edu/). 
To avoid calculation errors, we comprehensively cal-
culated the abundance of immune cells using another 
four algorithms: TIMER, xCell, EPIC, MCP-counter 
[17–20]. The immune score, stromal score, and ESTI-
MATE score for each sample were calculated by applying 
“ESTIMATE” function in R [21]. In addition, Eighteen 
immune-related therapeutic signatures were collected 
from the Jiao Hu et al. study [22], and 23 immune-related 
gene sets were collected from MSigDB database and pre-
vious publications [23]. Effector genes of immune cells 
were identified from previous publications [24]. To pre-
dict clinical outcome and response to ICI therapy among 
different sub-clusters, four response signatures reported 
previously [25–27] were calculated using ssGSEA. We 
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used these TIICs abundances or genesets to depict the 
immune-related parameters of the studying cohorts.

Identification of clusters based on consensus clustering
Unsupervised clustering methods were performed 
(K-means, “ConsensusClusterPlus” package in R) to 
determine sub-clusters (applied in TCGA cohort and two 
independent external validation cohorts, including affy-
combined cohort and illumina-combined cohort) based 
on LM22 [28, 29]. This procedure was repeated 1000 
times to ensure classification stability.

Construction of poor prognosis signature
The NSCLC samples in TCGA cohort were randomly 
assigned into the training/validation cohort (6:4). A total 
of 2720 immune-related genes were collected from Innat-
eDB (https://​www.​innat​edb.​com) and Immport (https://​
www.​immpo​rt.​org/). The immunological characteris-
tics mentioned above (Estimation of the immunologi-
cal characteristics of advanced NSCLC) were calculated 
separately using respective methods (The abundance of 
immune cells, calculated by TIMER, xCell, EPIC, MCP-
counter algorithm; The immune score, stromal score, and 
ESTIMATE score, calculated using the ESTIMATE algo-
rithm; The enrichment of immune-related signatures, 
calculated using ssGSEA). All variables were merged into 
a feature matrix, and feature engineering was performed 
to filter survival-unrelated and cluster 2-irrelevant vari-
ables. Then all features were standardized across all 
samples (features were standardized using Z-score nor-
malization), and LASSO-penalized regression was con-
ducted [30] to further reduce the number of features 
(“glmnet” package in R). Among features identified in 
LASSO analysis, multivariate cox regression analysis was 
conducted, and Poor Prognosis Signature (PPS) was con-
structed by applying the regression coefficients.

Construction of classifiers to distinguish different 
subclusters based on machine learning
To simplify and find the best approach to distinguish 
different advanced NSCLC sub-clusters (determined 
by K-M clustering), four different algorithms, including 
SVM (Support Vector Machine) [31], RF (Randomfor-
est) [32], Xgboost (eXtreme Gradient Boosting) [33, 34] 
and Adaboost (Adaptive boosting) [35], were recruited 
to build up the classifier. We attempted to find the best 
parameters of different algorithms. Specifically, for 
SVM, cross-validation and grid search were applied 
to find out the best model parameters (cost = 8 and 
gamma = 0.00391); for RF, we selected mtry = 18 and 
ntree = 800 as the best parameters, and random forest 
method has an internal validation method; for Xgboost 
and Adaboost, we extracted 80% samples randomly to 

assess the classifier and this procedure was repeated 1000 
times. We built up the classifier in the training cohort and 
compared their performance in the validation cohort. For 
every algorithm, the performance measures included 
accuracy, precision, recall, F1 score, and AUC.

Drug sensitivity
CTRP (Cancer Therapeutics Response Portal) and 
PRISM (Profiling Relative Inhibition Simultaneously in 
Mixture), which contains the sensitivity data for more 
than 1000 compounds, were used to generate drug sen-
sitivity data [36, 37]. Both databases provide AUC values 
as a measure of drug sensitivity, and higher AUC values 
indicate decreased sensitivity to specific compounds. 
Any compound or drug with more than 20% missing val-
ues was excluded before inferential analysis [14].

Calculation of TMB
Non-synonymous mutations were defined as "Frame_
Shift_Del", "Frame_Shift_Ins", "Missense_Mutation", 
"Nonsense_Mutation", "Splice_Site", "In_Frame_Del", 
"In_Frame_Ins", "Translation_Start_Site", "Nonstop_
Mutation", and the exome size was defined as 38 Mb [38]. 
TMB was calculated by this formula:

TMB = (Non-synonymous mutations)/ (exome size).

Copy number variation, DNA Methylation, and miRNA 
analysis
The TCGA CNV data (Masked copy number Segment 
hg38) was derived from TCGA database. Values of seg-
ment mean bigger than 0.1 were defined as gain and less 
than -0.1 as a loss. All CNV data was analyzed using GIS-
TIC 2.0 [39].

Methylation data using Illumina Human Methylation 
450 k was obtained from UCSC Xena browser. R package 
“Champ” was utilized for normalization and “limma” for 
the identification of differentially methylated probes [40].

R package “edgeR” was utilized to determine differ-
entially expressed miRNA. MiRNA-DEG links were 
predicted by different miRNA databases (miRDB, mir-
Tarbase, Targetscan, predictions in at least two databases 
were defined as positive predictions) [41–43].

Gene set enrichment analysis and differentially expressed 
gene analysis
To determine which pathways or biological functions dif-
fer between different sub-clusters, GSEA (version: 4.0) 
was performed. C5.go.bp.v7.2.symbols.gmt, c2.cp.kegg.
v7.2.symbols.gmt and h.all.v7.2.symbols.gmt set as refer-
ence gene sets. Differentially expressed genes were iden-
tified using “limma” package in R, and the thresholds 
were set as |log2-fold change |> 1.0 and Fdf < 0.05.

https://www.innatedb.com
https://www.immport.org/
https://www.immport.org/
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protein–protein interaction network
The PPI network of the key proteins identified in the 
multi-omic analysis was constructed using the STRING 
database (https://​string-​db.​org/), and parameters were 
set to default values [44].

Bioinformatic analysis
The bioinformatic analysis involved in our study 
included: (a). Preprocessing and analysis of the transcrip-
tome data, mutation data, and copy number alteration 
data. (b). Calculation of immune cell abundance using 
CIBERSORT, TIMER, xCell, EPIC, MCP-counter, and 
ESTIMATE algorithms. (c). GSEA and ssGSEA (single 
sample GSEA) were used to calculate an enrichment level 
of certain signatures in different groups or samples. (d). 
miRDB, mirTarbase, and TargetScan databases were used 
for the miRNA target prediction. (e). Classified patients 
into different groups using unsupervised KM cluster-
ing. (f ). Construction of PPS model using LASSO-COX 
analysis. (g). Construction of the classifier using differ-
ent MLs (RF, XGBoost, Adaboost, and SVM) and DL 
(NNet). (h). Drug sensitivity data (derived from CTRP 
and PRISM) analysis using ridge regression. (i). Protein–
protein interaction analysis using STRING.

Statistical analysis
Normality was calculated via the Shapiro–Wilk normality 
test. Wilcoxon test and Kruskal–Wallis test were utilized 
to analyze the ordered categorical variables. Student’s 
t- or chi-square test was used to compare continuous or 
discrete variables. Statistical analysis was two-sided, and 
P < 0.05 was considered to be statistically significant. To 
avoid false positives in multiple tests as much as possi-
ble, we performed the false discovery rate correction. All 
these analyses were conducted through R software.

Result
The landscape of advanced NSCLC TME
CIBERSORT algorithm was performed to quantify the 
abundance of LM22 in TCGA advanced NSCLC sam-
ples (stage 3 and stage 4 TCGA-LUSC, TCGA-LUAD, 
N = 195, Table  1). To avoid the calculation errors due 
to marker gene sets of tumor-infiltrating immune cells 
(TIICs), we estimated the abundance of immune cells 
using four other algorithms (TIMER, xCell, EPIC, MCP-
counter), and compared the correlations among them. 
Five TIICs overlapping in different algorithms, including 
CD8 + T cell, M2.macrophage, M1.macrophage, Neutro-
phil, Dendritic cell, have shown a high degree of similar-
ity with the results calculated by CIBERSORT (Additional 
file  1: Figure S1). E.g., the enrichment level of CD8 + T 
cell quantified by the four independent algorithms was 

in line with the previous CIBERSORT results (Spear-
man correlation, TIMER: 0.67, xCell: 0.80, EPIC: 0.71, 
MCP-counter: 0.65, Additional file  1: Figure S1, Addi-
tional file 2: Table S5), which demonstrated the stability 
of calculation. Unsupervised clustering (K-means) was 
performed to classify the advanced NSCLC into different 
sub-clusters based on TIICs level of the 195 tumor sam-
ples. We assessed the clustering parameters (Additional 
file 1: Figure S2 A-B) and the optimal cluster number was 

Table 1  Clinical information of patients in stage 3–4 TCGA-
NSCLC cohort

Characteristics (N = 195) No. cases

Age

age <  = 65 89

age > 65 105

NA 1

Pathologic_M

M0 131

M1 22

M1a 3

M1b 6

NA 33

Pathologic_N

N0 30

N1 46

N2 107

N3 7

NA 5

Pathologic_T

T1 12

T1a 5

T1b 3

T2 65

T2a 15

T2b 6

T3 47

T4 39

NA 3

Gender

female 77

male 118

Stage

Stage 3 3

Stage 3a 132

stage 3b 28

stage iv 32

Type

LUAD 105

LUSC 90

https://string-db.org/
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set as three. Samples from the TCGA cohort were then 
assigned to three separate clusters (cluster 1, n = 79; clus-
ter 2, n = 61; cluster 3, n = 55). The clinical information 
was shown in Supplementary Material (Additional file 2: 
Table S6).

Cluster analysis revealed distinct immune infiltra-
tion patterns among these three clusters (Fig.  1A, 
Additional file  1: Figure S2C): cluster-1 was charac-
terized by increases in the infiltration of resting DCs, 
M2.marcrophages, activated mast cells, monocytes, acti-
vated NKs, and resting CD4 + T memory cells; cluster-2 
showed an evident increase in the infiltration of plasma, 
M1.macrophages, activated CD4 + T memory cells, 
CD8 + T cells, T follicular helper cells, and Tregs; clus-
ter-3 exhibited a high infiltration of M0.macrophages and 
resting mast cells and exhibited decreases in other TIICs. 
The significant difference of TIICs infiltration in these 
three clusters was confirmed by Kruskal–Wallis tests 
(Fig.  2C). To investigate the association between TME 
phenotypes and clinical characteristics, clinical factors, 
including age, gender, tumor stage, lymph node metasta-
sis, and distant metastasis, were analyzed. However, there 
was no significant difference in these clinical characteris-
tics among the three clusters (Additional file 2: Table S6).

To unravel the biological differences among these clus-
ters, selected chemokine and cytokine mRNA expression 
in the 195 samples were analyzed. Grossly, immune-
activated-related molecules (CD8A, CXCL10, CXCL9, 
GZMA, GZMB, IFNG, PRF1, TBX2, and TNF) were rela-
tively higher in cluster-2 compared to the other clusters; 
cluster-3 was associated with relatively low expression of 
immune-checkpoint-related molecules (CD274, CTLA4, 
HAVCR2, IDO1, LAG3, PDCD1, and PDCD1LG2), 
whereas expression of TGFβ/EMT-pathway-related mol-
ecules (ACTA2, CLDN3, COL4A1, SMAD9, TGFBR2, 
TWIST1, VIM, and ZEB1) were high (Additional file  1: 
Figure S3A-B). Then, we referred to a database of co-
inhibitory, co-stimulatory, and MHC-related molecules 
to better compare these immunomodulators among 
these three clusters. Overall, the result showed that 
cluster-2 had a higher expression of co-inhibitors and 
co-stimulating molecules than the other clusters, while 
MHC-related molecules showed no significant differ-
ence among these clusters (Additional file 1: Figure S3C-
D). In addition, cluster-2 was associated with higher 
expression of effector genes of CD8 + T cells as com-
pared to cluster-1 and cluster-3 (Additional file  1: Fig-
ure S3E-F). These results indicated that cluster-2 tended 
to be an inflammatory phenotype, which indicated that 
patients classified into cluster-2 might have a better clini-
cal outcome. Kaplan–Meier curve indicated that clus-
ter-2 had an overall survival advantage (log-rank test, 
p = 0.017, Fig. 2A). ESTIMATE score and immune score 

were higher in cluster-2 (Fig. 1B). In addition, the GSVA 
score of four immunotherapy-related signatures was sig-
nificantly higher in cluster-2 as compared to the other 
clusters (Kruskal–Wallis tests, CD8.sig, IFNG.sig, EIGS, 
12-chemokines.sig, all p value < 0.001), which indicated 
that patients in cluster-2 might have a better response to 
ICI (immune checkpoint inhibitors) therapy (Fig. 2B).

Construction of the poor prognosis‑associated signature
We sought to establish a poor prognostic signature by 
using the samples’ immune status. The samples in TCGA 
cohorts were randomly separated into training cohort 
(n = 117) and validation cohort (n = 78). We collected 
immune-related genes (from InnateDB and Immport 
databases), immune-related signatures (from MsigDB 
and previous studies), immune-related therapeutic sig-
nature (from Jiao Hu et al. study), immune-related scores 
(calculated by ESTIMATE algorithm), and abundance 
of TIICs (calculated by CIBERSORT algorithm). Feature 
engineering was conducted to filter OS-unrelated and 
cluster2-irrelevant variables (Additional file 3: Table S7-9. 
Firstly, the univariate cox test was conducted to seek out 
features that were associated with overall survival out-
come. Then, the Wilcoxon test was used to find out fea-
tures related to cluster-2. The features obtained finally 
were used in the PPS model construction). Then 25 
gene-based LASSO-COX model was constructed, which 
we defined as PPS (Additional file 3: Table S10). PPS for 
each patient was calculated and patients were classified 
into high/low-risk groups according to the optimal cut-
off determined by X-tile software (Fig.  3A). It could be 
observed that patients in the PPS-low group had a dis-
tinct survival advantage (log-rank test, p < 0.001, Fig. 3B) 
as compared to the PPS-high group. AUC of the PPS pre-
diction for overall survival was 0.830 at 12 months, 0.894 
at 36  months, and 0.869 at 60  months in the training 
cohort (Fig. 3C), which showed quite a good prediction 
efficiency. The same results were shared in the valida-
tion cohort (Additional file 1: Figure S4). Kaplan–Meier 
curves showed patients in PPS-low had a better overall 
survival (log-rank test, p = 0.004, Additional file  1: Fig-
ure S4A), and AUC of PPS prediction for OS was 0.725 at 
12 months, 0.681 at 36 months, and 0.621 at 60 months 
(Additional file 1: Figure S4B). In addition, PPS was con-
firmed to be an independent prognostic factor both in 
the training and validation cohorts (Table  2). Then, we 
validated the PPS with two external data sets (Additional 
file  1: Figure S4), and the results were consistent with 
expectations (Additional file 1: Figure S4C-H).

According to previous studies, several prognostic mod-
els have been proposed based on NSCLC, lung adeno-
carcinoma, or lung squamous cell carcinoma [45–50]. 
However, there was almost no signature proposed based 
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Fig. 1  Unsupervised clustering of TIICS in stage 3–4 NSCLC. A. Top: Consensus clustering of the pairwise correlation of TIICs. Three modules 
associations were indicated in the heatmap. Middle: Five representative immune cells (T cells CD8, M1.Macrophage, Monocyte, M2.Macrophage, 
M0.Macrophage) from each module, with heatmap indicating the abundance (Dark colour represents high expression level, while the light colour 
represents the low expression level). Bottom: Distribution of the five selected TIICs within the three clusters (row), with dashed line indicating the 
median. B Radar graph indicates the ESTIMATE scores and four immunotherapy-related signature scores in three clusters. Line color represents the 
three clusters: Red for cluster-1, green for cluster-2, and blue for cluster-3
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on advanced NSCLC, and the actual use of the former 
models might lead to fallacies due to this. In our study, 
the AUC of PPS was 0.784 at 12  months and 0.808 at 
36 months, and 0.764 at 60 months in our entire cohort 
(N = 195) (Additional file 1: Figure S4I-J), and the AUC of 

PPS in the luad/lusc subgroup were shown in the figure 
(Additional file  1: Figure S4K-L, LUAD: 0.802 at 12  M, 
0.806 at 36 M, 0.727 at 60 M; LUSC: 0.757 at 12 M, 0.812 
at 36 M, 0.788 at 60 M). Here, we compared the efficiency 
of our PPS model with other models and evaluated the 

Fig. 2  TME characteristics in each clusters. A Kaplan–Meier curve displaysdifferences of overall survival among three clusters. Log-rank statistic was 
conducted to test statistical significance. B Comparison of GSVA score of CD.Sig, IFNG.sig, EIGS, 12-chemokine signature among different clusters. 
Kruskal–Wallis statistic was conducted to test statistical significance. C 22 TIICs abundance among three clusters were shown in the box plot. ***, 
P < 0.0001; **, P < 0.001; *, 0.001 < P < 0.01
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AUC as a measure of accuracy. As shown in the table 
(Table 3, Additional file 1: Figure S4M-R), the PPS model 
always reached the highest AUC whether in advanced 
NSCLC, adenocarcinoma, or squamous, suggesting that 
our PPS had favorable efficacy for predicting overall sur-
vival in advanced NSCLC.

The PPS score predicts immunotherapeutic benefits
To explore the biological significance of the PPS, the cor-
relations between PPS and immune-related parameters 
were analyzed. Among 8 main TIICs, PPS was found to 
be positively correlated with M0 and M2 macrophages, 
and negatively correlated with CD8 + T cells, Tfh, 

activated CD + T memory cells, Tgd, M1 macrophage, 
and plasma (Additional file  1: Figure S5). In addition, 
PPS was negatively correlated with the majority of 
immunomodulatory factors. Notably, PPS was positively 
correlated with the expression of TGFβ/EMT-pathway-
related molecules (COL4A1, ZEB1, ACTA2, TWIST1, 
VIM, TGFBR2), and several immunotherapy-associated 
signatures (Additional file  1: Figure S6). GSEA results 
(Additional file 1: Figure S7) revealed that many immune-
related functions or pathways were enriched in the 
PPS-low group (such as “Adaptive_immune_response”, 
“Inflammatory_response”, “T_cell_receptor_signaling_
pathway” and “B_cell_receptor_signaling_pathway”).

Fig. 3  Construction of immune-related poor prognosis signature. A The distribution of PPS score, OS, and expression patterns of genes involved 
in the signature. B Kaplan–Meier curve of OS among PPS-high and PPS-low group patients. Log-rank statistic was conducted to test statistical 
significance. C Performance assessment of the PPS by AUC. ROC analysis revealed the AUC was 0.83 at 12 months, 0.894 at 36 months, and 0.869 at 
60 months
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In the subsequent analysis, we evaluated the prognostic 
value of the PPS in three independent ICI immunother-
apy cohorts (GSE126044 n = 16, GSE135222 n = 27, and 
IMvigor210 n = 348). Patients were assigned to PPS-high 
or PPS-low group. The survival outcome and distribution 
of the PPS in GSE126044 and GSE135222 cohorts were 
shown in the supplementary figures (Additional file  1: 
Figure S7D-G). However, the results were not statisti-
cally significant, which might be due to the small sample 
sizes. The patients who received anti-PD-L1 treatment 
in IMvigor210 were assigned to PPS-low or PPS-high 
groups, too. It was shown that the PPS-low group had 
a distinct overall survival advantage (log-rank test, 
p < 0.001, Fig. 4A). Patients benefited from the treatment 
(CR/PR/SD) tended to have lower PPS score as compared 
to those PD patients (Fig.  4B). Notably, the PPS score 
gradually decreased from immune-desert phenotype 
to immune-excluded phenotype to immune-inflamed 

phenotype (Fig.  4C). Overall, PPS score might have the 
prediction ability in patients treated with anti-PD(L)1, 
and a higher PPS score always associated with worse clin-
ical outcome. The results were not statistically significant 
(P > 0.05) in GSE126044 and GSE135222 cohorts, which 
were likely to be ascribed to the small sample sizes.

A robust model predicts sub‑clusters based 
on immunological parameters
To build a classifier that could distinguish differ-
ent subtypes for advanced NSCLC, we applied four 
algorithms (RF, SVM, Xgboost, Adaboost) to build 
the model, and selected the best one. Candidate vari-
ables included immune-related signatures, immune-
related therapeutic signature, immune-related scores 
(calculated by ESTIMATE and IPS), PPS scores, and 
abundance of TIICs, and different clusters were set 
as response variables. Accuracy, precision, recall, 

Table 2  Univariate and multivariate analyses of clinicopathological characteristics and PPS with overall survival in training and 
validation cohort

The significant P value was indicated in bold

* Statistically significant results (P<0.05)

Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Training (n = 117)

Age 1.003 0.976–1.032 0.812 1.029 0.998–1.060 0.067

pathologic_N 0.936 0.683–1.282 0.680 1.292 0.909–1.836 0.153

pathologic_T 1.269 0.967–1.664 0.086 1.228 0.893–1.690 0.207

Gender 1.600 0.945–2.709 0.080 0.983 0.550–1.757 0.954

PPS* 2.714 2.108–3.495  < 0.001 2.902 2.202–3.825  < 0.001
Test (n = 78)

Age 0.998 0.965–1.032 0.886 1.008 0.972–1.044 0.679

pathologic_N 1.207 0.822–1.771 0.337 1.346 0.823–2.199 0.236

pathologic_T 1.042 0.761–1.427 0.797 1.224 0.848–1.766 0.280

Gender 0.692 0.370–1.296 0.250 0.583 0.306–1.113 0.102

PPS* 1.694 1.272–2.256  < 0.001 1.718 1.289–2.288  < 0.001

Table 3  Comparison of the performance of PPS with other previous signatures

NSCLC Adenocarcinoma Squamous Pubmed ID Study subjects

1 year 3 year 5 year 1 year 3 year 5 year 1 year 3 year 5 year

PPS 0.784 0.808 0.764 0.802 0.806 0.727 0.757 0.812 0.788 NULL Stage 3 & 4 NSCLC

Jia Li, et al 0.596 0.539 0.415 NULL NULL 32,020,214 NSCLC

Jie Yao, et al 0.629 0.633 0.564 NULL NULL 33,403,045 NSCLC

Han Wang, et al NULL 0.614 0.489 0.445 NULL 32,989,393 LUAD

Jie Zhu, et al 0.587 0.594 0.691 NULL 32,695,805 LUAD

Deng gang Fu, et al NULL NULL 0.596 0.694 0.631 33,005,178 LUSC

Jili Hou, et al NULL NULL 0.593 0.537 0.593 33,466,167 LUSC
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F1 score, and AUC value in the validation cohort 
were used to measure the efficacy of different classi-
fiers. Before the calculation, we adjusted the param-
eters used in different algorithms according to grid 
search or other approaches (Additional file  1: Figure 

S8A-B). Classifiers’ performance was shown in the 
table (Additional file  3: Table  S11, Additional file  1: 
Figure S8C). The results indicated that the classifiers 
built by RF and Adaboost had higher efficacy than oth-
ers, and Adaboost seems to be better. For example, the 

Fig. 4  The performance and distribution of PPS in IMvigor210 cohort. A Kaplan–Meier curve of patients in PPS-high and PPS-low groups. Log-rank 
test statistic was conducted to test statistical significance. B The PPS distribution of patients in treatment-benefit and treatment-non-benefit groups. 
Kruskal–Wallis statistic was conducted to test statistical significance. C The PPS distribution of patients in different immune phenotype groups. 
Kruskal–Wallis statistic was conducted to test statistical significance
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accuracy for cluster 1–3 was0.923, 0.936, 0.987 and 
AUC for cluster 1–3 was0.928, 0.896, 0.992 in RF, while 
in SVM, the accuracy for cluster 1–3 was 0.859, 0.872, 
0.885, and AUC for cluster 1–3 was 0.864, 0.826, 0.835 
(Additional file 3: Table S11). The detailed information 
of these classifiers was uploaded into Github (https://​
github.​com/​LClun​gcanc​er/​nsclc-​2021_​class​ifier). 
The ranking plot of variables weight indicated that 
CD8 + T cell and Macrophages might be the keys to 
distinguish different clusters in patients with advanced 
NSCLC (Additional file 1: Figure S8D-E).

To verify the generalization ability of our classifiers, 
we test the performance of the selected two classifiers 
(RF and Adaboost) in the combined-affy cohort and 
combined-illumina cohort. The same KM clustering in 
the testing cohort was conducted, and we used Submap 
(GenePattern “Submap” module) to prove the iden-
tity of the clusters was the same as the TCGA cohort. 
Then, we test the performance of the selected two clas-
sifiers we constructed before. The result was shown in 
Additional file 3: Table S12, the classifiers showed good 
generalization ability (Additional file  3: Table  S12). In 
addition, we used a neural network (NNet) to learn 
this classification. As shown in the Additional file  3: 
Table  S13, “T cell CD8”, “T cell CD4 memory resting”, 
“Macrophage M0” and “B cell plasma” was the impor-
tant variables in the classification, which was similar 
to the results of machine learning. The validation and 
Nnet procedure were uploaded to https://​github.​com/​
LClun​gcanc​er/​nsclc-​2021_​class​ifier.

Differences in somatic mutations related to the different 
clusters
To reveal the relevant genetic alterations, we ana-
lyzed the somatic mutations among different clusters 
(Fig. 5A–C). Total tumor mutation burden (TMB) was 
higher in cluster 2 as compared to cluster 1 (Fig.  5D), 
while TMB showed no difference between cluster 2 
and cluster 3 (Kruskal–Wallis test, p = 0.094). We 
further analyzed the mutation situations of the top 
30 genes with the highest mutant frequency (Addi-
tional file  3: Table  S14-15), and selected several high-
frequency mutated genes in each cluster (including 
LRP1B, CSMD3, RYR2, RYR3, SYNE1, TTN). In addi-
tion, we collected some cancer drive genes and immu-
notherapy-related genes (including EGFR, ALK, KRAS, 
TP53, MUC16, MET, BRCA1, BRCA2, POLE, POLD1, 
MSH2, STK11, BRAF, PIK3CA, HER2, FGFR1, ROS1) 
[51]. Combined with high-frequency mutated genes we 
identified before, we examined the mutation proportion 
of these 23 genes among different clusters. The Chi-
square test result revealed that TP53, MUC16, LRP1B, 

SYNE1, and TTN showed higher mutation proportion 
in cluster 2 as compared to cluster 1, and EGFR, RYR2 
showed a higher proportion in cluster 2 as compare to 
cluster 3 (Additional file 3: Table S16).

Genetic and epigenetic regulation related to the different 
clusters
To obtain a profound understanding of the difference 
among different clusters, we assessed somatic copy num-
ber alterations, DNA methylation, and miRNA for these 
three clusters. Precisely, we made two comparisons (C2 
vs C1, C2 vs C3). First, differentially expression genes 
(DEGs) between cluster-2 and cluster-1 or between clus-
ter-2 and cluster-3 were analyzed. In the comparison 
between C2 and C1, 2318 DEGs were identified, includ-
ing 2135 genes with a higher expression in cluster-1 and 
183 genes with a higher expression in cluster-2. In the 
comparison between C2 and C3, 1242 DEGs were iden-
tified, including 1001 genes with a higher expression in 
cluster-1 and 241 genes with a higher expression in clus-
ter-2 (Additional file 3: Table S17).

SCNAs are widespread in human cancers and have a 
profound impact on immune evasion. GISTIC 2.0 was 
used to conduct genomic variation analysis (Fig. 6A). In 
the comparison between C2 and C1, 523 DEGs upregu-
lated in cluster-1 were encoded by the genomic region 
with a higher frequency for deletions in cluster-2 or 
copy number gains in cluster-1; 71 DEGs upregulated 
in cluster-2 were encoded by the genomic region with a 
higher frequency for deletions in cluster-1 or copy num-
ber gains in cluster-2 (Additional file 3: Table S18). In the 
comparison between C2 and C3, 230 DEGs upregulated 
in cluster-3 were encoded by the genomic region with a 
higher frequency of deletions in cluster-2 or copy num-
ber gains in cluster-3; 17 DEGs upregulated in cluster-2 
were encoded by the genomic region with a higher fre-
quency of deletions in cluster-3 or copy number gains in 
cluster-2 (Additional file 3: Table S18).

To assess the impact of DNA methylation among dif-
ferent clusters, DNA methylation data (Illumina Human 
Methylation 450  k) were analyzed. In the comparison 
between C2 and C1, 7 probes with higher beta values in 
cluster-1 were located in the proximal promoter of DEGs 
upregulated in cluster-2, while 10 probes with higher 
beta values in cluster-2 were located in the proximal 
promoter of DEGs upregulated in cluster-1. In the com-
parison between C2 and C3, 1 probe with higher beta 
values in cluster-3 were located in the proximal promoter 
of DEGs upregulated in cluster-2, while 17 probes with 
higher beta values in cluster-2 were located in the proxi-
mal promoter of DEGs upregulated in cluster-3 (Addi-
tional file 3: Table S19).

https://github.com/LClungcancer/nsclc-2021_classifier
https://github.com/LClungcancer/nsclc-2021_classifier
https://github.com/LClungcancer/nsclc-2021_classifier
https://github.com/LClungcancer/nsclc-2021_classifier
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Next, we identified differentially expressed miRNA 
between C2 and C1 or between C2 and C3. In the com-
parison between C2 and C1, 16 miRNA were upregu-
lated in C1 and 52 miRNA were upregulated in C2; In 
the comparison between C2 and C3, 54 miRNA were 
upregulated in C3 and 9 miRNA were upregulated in 
C2. We examined the reliable links between DEmiR-
NAs and DEGs based on three databases (miRDB, miR-
tarbase, Targetscan, prediction in at least two databases 
was considered reliable). In the comparison between 
C2 and C1, DEmiRNAs upregulated in cluster-1 target 
3 DEGs in cluster-2, and DEmiRNAs upregulated in 

cluster-2 target 314 DEGs in cluster-1 (Fig.  6B, Addi-
tional file 3: Table S20). In the comparison between C2 
and C3, DEmiRNAs upregulated in cluster-3 target 7 
DEGs in cluster-2, and DEmiRNAs upregulated in clus-
ter-2 target 14 DEGs in cluster-3 (Fig.  6C, Additional 
file 3: Table S20).

Key DEGs affected by genetic and epigenetic regulation
We assumed that DEGs affected by different genetic and 
epigenetic regulation might play an important role in 
the transformation of the phenotype. Genes identified 
in at least two out of three above analyses (SCNA, DNA 

Fig. 5  The landscape of mutation status among different clusters. A–C Top 30 genes with the highest mutation frequencies in cluster-1 (A), 
cluster-2 (B) and cluster-3 (C). D Tumor mutation burden (TMB) distribution in different clusters. Kruskal–Wallis statistic was conducted to test 
statistical significance
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methylation, and miRNA) were considered key DEGs. In 
the comparison between C2 and C1, 84 key DEGs were 
identified (80 key DEGs upregulated in cluster-1 and 4 
key DEGs upregulated in cluster-2, Additional file 1: Fig-
ure S9A). The PPI network was constructed based on the 
84 key DEGs using the STRING database, and the result 
highlighted HSPA8, CREB1, RAP1A as the key nodes 
within the network (Additional file 1: Figure S9C). In the 
comparison between C2 and C3, 5 key DEGs were iden-
tified (including GRM2, TBXA2R, PLEC, LUZP1, RELA, 
all 5 key DEGs were upregulated in cluster-3, Additional 
file  1: Figure S9B). These results indicated that HSPA8, 
CREB1, RAP1A might be the potential therapeutic 

targets for patients in cluster-1. GRM2, TBXA2R, PLEC, 
LUZP1, RELA might be associated with poor prognosis 
in cluster-3.

Identification of potential drugs for patients in different 
clusters
After preprocessing, drug sensitivity profiles of 1291 
compounds in PRISM dataset and 354 compounds in 
CTRP were used for subsequent analysis. The drug sensi-
tivity of entire clinical samples was predicted based on a 
ridge regression model (“pRRophetic” package in R), and 
we obtained the AUC value of each compound in each 
sample (lower AUC values indicate increased sensitivity 

Fig. 6  The differences in epigenetic regulation in different clusters. A Comparison of the copy number alterations among different clusters. Gistic 
scores were assessed by GISTIC 2.0 with red for amplification and blue for deletion. B In the comparison between cluster-1 and cluster-2, venn 
diagram summarizes the DEmiRNA-mRNA links predicted by miRtarbase, miRDB and Targetscan databases. C In the comparison between cluster-3 
and cluster-2, venn diagram summarizes the DEmiRNA-mRNA links predicted by miRtarbase, miRDB and Targetscan databases
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to specific compounds). We assessed the compounds 
with higher sensitivity in cluster-1, cluster-2, cluster-3 in 
turn, and these analyses were conducted using CTRP and 
PRISM data, respectively.

Compounds with lower AUC values in specific clus-
ters were identified (Log2FC > 0.07, p value < 0.05, Fig. 7, 
Additional file  3: Table  S21). For cluster-1 (Fig.  7A), 5 
PRISM-derived compounds (including RITA, 12-O-tet-
radecanoylphorbol-13-acetate, Ro-4987655, idasanutlin, 
PD-0325901) and 1 CTRP-derived compounds (includ-
ing austocystin D) were identified; For cluster-2 (Fig. 7B), 
1 PRISM-derived compounds (including gemcitabine) 
and 10 CTRP-derived compounds (including paclitaxel, 
CR-1-31B, GSK461364, BI-2536, vincristine, oligomy-
cin A, ouabain, KX2-391, SR-II-138A, daporinad) were 
identified; For cluster-3 (Fig.  7C), 1 PRISM-derived 
compounds (including vindesine) and 1 CTRP-derived 
compounds (including dasatinib) were identified. All 
compounds identified had lower AUC values in a specific 
cluster as compared to the other clusters. These com-
pounds might hold therapeutic potential in patients with 
advanced NSCLC of different clusters.

Discussion
Despite substantial advances having been made in the 
treatment of lung cancer within the past few decades, 
the therapeutic outcome of advanced NSCLC remains 
far from satisfactory [52]. In this study, various machine 
learning algorithms and bioinformatic analysis were con-
ducted to depict landscapes of patients with advanced 
NSCLC. The landscape of cancer research and treat-
ment is gradually changing with the pervading of AI 
(Artificial Intelligence). The frontier of cancer research 
involves collaborations between medical oncologists and 
computer scientists. Specifically, with the application of 
ML (machine learning), DL (deep learning), and multi-
ple neural networks, many issues have been addressed, 
especially the diagnosis and prognosis prediction of 
cancer [53, 54]. In recent years, AI has provided a new 
approach for the diagnosis and prognosis of cancer and 
made cancer prediction performance reach a new height 
[54]. According to Ahmed et al. [53], the use of AI on oral 
oncology is in the nascent stage, and research such as 
digital histopathologic images is very few, indicating that 
we should focus on cancer at more levels. In our study, 
we focused on the NSCLC patients at an advanced stage. 
When applying ML, we used multiple methods (e.g. four 
MLs and a neural network were applied in the construc-
tion of the classifiers) and data from different sources 
(e.g. drug sensitivity data from CTRP and PRISM data-
bases) to maximize the reliability. When we measured 
the performance of results, multiple indicators (e.g. accu-
racy, recall, precision, F1 score, and AUC were used to 

measure the performance of the classifier) and horizon-
tal comparison (e.g. the PPS model was compared with 
the prediction model proposed by previous studies) were 
used to ensure the accuracy of the analysis. In general, 
our study was not just a “Training-Validation” pattern. 
We attempted to explore the issue from multi-method, 
multi-angle, and multi-measure.We acknowledged that 
the advanced NSCLC patients could be classified into 
three clusters, and each cluster has its characteristics: 
cluster-1 was characterized by increases in the infiltra-
tion of resting DCs, M2.marcrophages, activated mast 
cells, monocytes, activated NKs, and resting CD4 + T 
memory cells; cluster-2 was characterized by evident 
increase in the infiltration of plasma, M1.macrophages, 
activated CD4 + T memory cells, CD8 + T cells, T fol-
licular helper cells, and Tregs; cluster-3 was character-
ized by high infiltration of M0.macrophages and resting 
mast cells and exhibited decreases in other TIICs. Differ-
ent classifiers were then designed to distinguish different 
clusters based on various machine learning algorithms 
(including RF, SVM, Xgboost, and Adaboost), and RF/
Adaboost were considered as highly efficient classifi-
ers with the best performance. These analyses not only 
simplified the basis for the classification but ensured the 
accuracy of the classifier. CD8 + T cells and Macrophages 
were identified to play a major role in the classification. 
In other words, CD8 + T cells and Macrophages are 
the key TIICs to alter immune phenotypes in advanced 
NSCLC, which is in agreement with previous researches 
[55, 56]. In addition, cluster-2 was found to be correlated 
with better overall survival outcome and might have a 
better clinical response to immunotherapy.

We then constructed the Poor Prognosis Signature 
based on the immune-related parameters, and we found 
out that the PPS score had survival prediction efficacy 
in patients treated with anti-PD(L)1 immunotherapy. 
Similar, similar prediction models have been proposed in 
previous studies. But the actual use of them might lead 
to fallacies since almost none of them were constructed 
based on the advanced tumor stage. The benchmarking 
results showed that our poor prognosis signature had the 
best prediction performance. To find out the key mole-
cules in the differences between cluster-2 and cluster-1 or 
between cluster-2 and cluster-3, we turned to explore the 
genetic or epigenetic alterations among different clusters. 
The results unraveled that three key nodes (including 
HSPA8, CREB1, RAP1A) showed noteworthy differences 
between cluster-1 and cluster-2. Similarly, we found five 
molecules (including GRM2, TBXA2R, PLEC, LUZP1, 
RELA) that might be associated with poor prognosis in 
cluster-3. In previous studies, HSPA8 and RAP1A have 
been demonstrated to be associated with cancer growth 
and proliferation in various human cancers [57, 58]. 
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Fig. 7  Identification of potential agents in each cluster. Differential drug response analysis of compounds identified in cluster-1 (A), cluster-2 (B), 
and cluster-3 (C). Note that higher estimated AUC values imply lower drug sensitivity. ***, P < 0.001; **, P < 0.01; *, P < 0.05
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CREB1 was considered to promote invasion and migra-
tion in human cancers, including NSCLC [59, 60]. In our 
analysis, we came to the point that these three molecules 
might serve as potential therapeutic targets for patients 
in cluster-1.

Finally, based on drug sensitivity data derived from 
CTRP and PRISM, we identified several compounds 
which might serve as medication for different clusters 
of patients with advanced NSCLC. Specifically, six com-
pounds for cluster-1 (RITA, 12-O-tetradecanoylphor-
bol-13-acetate, Ro-4987655, idasanutlin, PD-0325901, 
austocystin D), 11 compounds for cluster-2 (gemcit-
abine, paclitaxel, CR-1-31B, GSK461364, BI-2536, vin-
cristine, oligomycin A, ouabain, KX2-391, SR-II-138A, 
daporinad), and 2 compounds for cluster-3 (vindes-
ine, dasatinib). These results gave us some clues. For 
example, MAP2K1 inhibitors (including PD-0325901 
and RO-4987655) showed their capacity of improving 
PFS and OS of patients with solid tumors as well as the 
major treatment-related toxicity [61, 62]. Our study fur-
ther unraveled that PD-0325901 or RO-4987655 might 
be more applicable to cluster-1 patients with advanced 
NSCLC. Common antitumor drugs, including gemcit-
abine and paclitaxel [63–65], might apply to cluster-2, 
and dasatinib might be more applicable to patients in 
cluster-3.

However, there are still shortcomings and a lot of room 
for improvement in our study. A limitation of the study 
is the small sample size. In our study, the sample size of 
the main cohort (TCGA cohort, N = 195) was small. 
However, there are not much data of advanced NSCLC 
available in the public database. Thus, we could only 
verify the PPS model and the performance of the clas-
sifier using small sample data. On the other hand, the 
epigenetic-related analysis could only be conducted in 
the main cohort due to the lack of relevant data in the 
other cohorts, which might cause a certain degree of bias. 
In future studies, we will take account of these factors to 
enhance our study. In addition, we only selected the most 
prominent shift in mutation or drug sensitivity for fur-
ther analysis, which could cause a certain bias.

Conclusions
In conclusion, our study established new stratification 
of stage 3–stage 4 NSCLC, simplified the classifica-
tions, built an immune-related poor prognosis signa-
ture, analyzed the key therapeutic targets in cluster1/3, 
and explored the potential drug for patients in each 
cluster. With the promotion of the precision medicine 
concept, our study could provide more convenience 
for diagnosis and treatment for patients with advanced 
NSCLC. There are also some limitations to this study. 

The verification of the conclusions needs to be deter-
mined in related clinical trials in the future.
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